Debias AI


Set the standards by writing the standards

The scale and pattern-matching tendencies of machine learning technologies are automating and amplifying existing structural inequality.

Technologists: it's time to interrogate how we got this point and where we want to go next. We need tools for introspection, risk assessment and harm mitigation. We need to do this work as individuals, as businesses, and as an industry, and we need to be ready to be held accountable. Arm yourself with tools to assess, quantify, and deploy fairer technology for a fairer tomorrow.


Subscribe for updates

tinyletter.com/debias-ai

For worksheets, freebies and updates. Infrequent emails, important updates only.


Also check out

ethical-litmus.site
Ethics Litmus Tests — available for free PDF download or pre-order.

Mapping Fair ML
A map of resources, activities, worksheets, approaches, and groups working on fair ML and data ethics.

fairXiv.org
Discover academic papers on fair and ethical machine learning.

Fair ML Reading Group
A multi-disciplinary group reading papers on the topic of fairness and ethics in Machine Learning and Data Science. Based in Melbourne, Australia.



 
 

Debias AI brought to you by @summerscope